Computing Observation Weights for Signal Extraction and Filtering
Andrew Harvey and
Siem Jan Koopman
No 888, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
We present algorithms for computing the weights implicitly assigned to observations when estimating unobserved components using a model in state space form. The algorithms are for both filtering and signal extraction. In linear time-invariant models such weights can sometimes be obtained analytically from the Wiener-Kolmogorov formulae. Our method is much more general, being applicable to any model with a linear state space form, including models with deterministic components and time-varying state matrices. It applies to multivariate models and it can be used when there are data irregularities, such as missing observations. The algorithms can be useful for a variety of purposes in econometrics and statistics: (i) the weights for signal extraction can be regarded as equivalent kernel functions and hence the weight pattern can be compared with the kernels typically used in nonparametric trend estimation; (ii) the weight algorithm for filtering implicitly computes the coefficients of the vector error-correction model (VECM) representation of any linear time series model; (iii) as a by-product the mean square errors associated with estimators may be obtained; (iv) the algorithm can be incorporated within a Markov chain Monte Carlo (MCMC) method enabling computation of weights assigned to observations when computing the posterior mean of unobserved components within a Bayesian treatment. A wide range of illustrations show how the algorithms may provide important insights in empirical analysis. The algorithms are provided and implemented for the software package SsfPack 2.3 , that is a set of filtering, smoothing and simulation algorithms for models in state space form (see www.ssfpack.com). Some details of implementation and example programs are given in the appendix of the paper.
Date: 2000-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/0888.pdf main text (application/pdf)
Related works:
Journal Article: Computing observation weights for signal extraction and filtering (2003) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:0888
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum (baum@bc.edu).