Simulation Based Inference in Simultaneous Equations
Lynda Khalaf
No 1078, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
In the context of multivariate regression (MLR) and simultaneous equations (SE), it is well known that commonly employed asymptotic test criteria are seriously biased towards over-rejection. In this paper, we propose exact likelihood based tests for possibly nonlinear hypotheses on the coefficients of SE systems. We discuss a number of bounds tests and Monte Carlo simulation based tests. The latter involves maximizing a randomized p-value function over the relevant nuisance parameter space which is done numerically by using a simulated annealing algorithm. We consider limited and full information models, in which case we introduce a multi-equation Anderson-Rubin-type test. Illustrative Monte Carlo experiments show that: (i) bootstrapping standard instrumental variable (IV) based criteria fails to achieve size control, especially (but not exclusively) under near non-identification conditions, and (ii) the tests based on IV estimates do not appear to be boundedly pivotal and so no size-correction may be feasible. By contrast, likelihood ratio based tests work well in the experiments performed.
Date: 2000-08-01
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/1078.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:1078
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().