Closed Form Integration of Artificial Neural Networks with Some Applications to Finance
Andreas Gottschling,
Christian Haefke and
Halbert White
Additional contact information
Andreas Gottschling: Deutsche Bank Research
Christian Haefke: University of California
No 1080, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
Many economic and econometric applications require the integration of functions lacking a closed form antiderivative, which is therefore a task that can only be solved by numerical methods. We propose a new family of probability densities that can be used as substitutes and have the property of closed form integrability. This is especially advantageous in cases where either the complexity of a problem makes numerical function evaluations very costly, or fast information extraction is required for time-varying environments. Our approach allows generally for nonparametric maximum likelihood density estimation and may thus find a variety of applications, two of which are illustrated briefly: - Estimation of Value at Risk based on approximations to the density of stock returns. - Recovering risk neutral densities for the valuation of options from the option price - strike price relation.
Date: 2000-08-01
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/1080.pdf main text (application/pdf)
Related works:
Working Paper: CLOSED FORM INTEGRATION OF ARTIFICIAL NEURAL NETWORKS WITH SOME APPLICATIONS TO FINANCE (2000) 
Working Paper: Closed Form Integration of Artificial Neural Networks with Some Applications to Finance (1999) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:1080
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().