Feasible Multivariate Nonparametric Estimation Using Weak Separability
Joris Pinkse
No 1241, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
One of the main practical problems of nonparametric regression estimation is the curse of dimensionality. The curse of dimensionality arises because nonparametric regression estimates are dependent variable averages local to the point at which the regression function is to be estimated. The number of observations `local' to the point of estimation decreases exponentially with the number of dimensions. The consequence is that the variance of unconstrained nonparametric regression estimators of multivariate regression functions is often so great that the unconstrained nonparametric regression estimates are of no practical use. In this paper I propose a new estimation method of weakly separable multivariate nonparametric regression functions. Weak separability is a weaker condition than required by other dimension--reduction techniques, although similar asymptotic variance reductions obtain. Indeed, weak separability is weaker than generalized additivity (see Hardle and Linton, 1996 and Horowitz, 1998). The proposed estimator is relatively easy to compute. Theoretical results in this paper include (i) a uniform law of large numbers for marginal integration estimators, (ii) a uniform law of large numbers for marginal summation estimators, (iii) a uniform law of large numbers for my new nonparametric regression estimator for weakly separable regression functions, (iv) both a uniform strong and weak law of large numbers for U-statistics, and (v) three central limit theorems for my nonparametric regression estimator for weakly separable regression functions.
Date: 2000-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/1241.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:1241
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().