Accelerated Asymptotics for Diffusion Model Estimation
Federico Bandi and
Peter Phillips
Additional contact information
Federico Bandi: University of Chicago
No 1656, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
We propose a semiparametric estimation procedure for scalar homogeneous stochastic differential equations. We specify a parametric class for the underlying diffusion process and identify the parameters of interest by minimizing criteria given by the integrated squared difference between kernel estimates of drift and diffusion function and their parametric counterparts. The nonparametric estimates are simplified versions of those in Bandi and Phillips (1998). A complete asymptotic theory for the semiparametric estimates is developed. The limit theory relies on infill and long span asymptotics and the asymptotic distributions are shown to depend on the chronological local time of the underlying diffusion process. The estimation method and asymptotic results apply to both stationary and nonstationary processes. As is standard with semiparametric approaches in other contexts, faster convergence rates are attained than is possible in the fully functional case. From a purely technical point of view, this work merges two strands of the most recent econometrics literature, namely the estimation of nonlinear models of integrated time-series [Park and Phillips (1999, 2000)] and the functional identification of diffusions under minimal assumptions on the dynamics of the underlying process [Florens-Zmirou (1993), Jacod (1997), Bandi and Phillips (1998) and Bandi (1999)]. In effect, the 'minimum distance' type of estimation that is presented in this paper can be interpreted as extremum estimation for potentially nonstationary and nonlinear continuous-time models.
Date: 2000-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/1656.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:1656
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().