EconPapers    
Economics at your fingertips  
 

Understanding health management and safety decisions using signal processing and machine learning

Lisa Aufegger, Colin Bicknell, Emma Soane, Hutan Ashrafian and Ara Darzi

LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library

Abstract: Background: Small group research in healthcare is important because it deals with interaction and decision-making processes that can help to identify and improve safer patient treatment and care. However, the number of studies is limited due to time- and resource-intensive data processing. The aim of this study was to examine the feasibility of using signal processing and machine learning techniques to understand teamwork and behaviour related to healthcare management and patient safety, and to contribute to literature and research of team working in healthcare. Methods: Clinical and non-clinical healthcare professionals organised into 28 teams took part in a video- and audio-recorded role-play exercise that represented a fictional healthcare system, and included the opportunity to discuss and improve healthcare management and patient safety. Group interactions were analysed using Recurrence Quantification Analysis (Knight et al., 2016), a signal processing method that examines stability, determinism, and complexity of group interactions. Data were benchmarked against self-reported quality of team participation and social support. Transcripts of group conversations were explored using the topic modelling approach (Blei et al., 2003), a machine learning method that helps to identify emerging themes within large corpora of qualitative data. Results: Groups exhibited stable group interactions that were positively correlated with perceived social support, and negatively correlated with predictive behaviour. Data processing of the qualitative data revealed conversations focused on: (1) the management of patient incidents; (2) the responsibilities among team members; (3) the importance of a good internal team environment; and (4) the hospital culture. Conclusions: This study has shed new light on small group research using signal processing and machine learning methods. Future studies are encouraged to use these methods in the healthcare context, and to conduct further research on how the nature of group interaction and communication processes contribute to the quality of team and task decision making.

JEL-codes: J50 (search for similar items in EconPapers)
Pages: 12 pages
Date: 2019-06-13
New Economics Papers: this item is included in nep-big, nep-cdm and nep-pay
References: View complete reference list from CitEc
Citations:

Published in BMC Medical Research Methodology, 13, June, 2019, 19(1). ISSN: 1471-2288

Downloads: (external link)
http://eprints.lse.ac.uk/101073/ Open access version. (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:101073

Access Statistics for this paper

More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().

 
Page updated 2025-03-31
Handle: RePEc:ehl:lserod:101073