Efficiency improvements in inference on stationary and nonstationary fractional time series
Peter Robinson
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
We consider a time series model involving a fractional stochastic component, whose integration order can lie in the stationary/invertible or nonstationary regions and be unknown, and additive deterministic component consisting of a generalised polynomial. The model can thus incorporate competing descriptions of trending behaviour. The stationary input to the stochastic component has parametric autocorrelation, but innovation with distribution of unknown form. The model is thus semiparametric, and we develop estimates of the parametric component which are asymptotically normal and achieve an M-estimation efficiency bound, equal to that found in work using an adaptive LAM/LAN approach. A major technical feature which we treat is the effect of truncating the autoregressive representation in order to form innovation proxies. This is relevant also when the innovation density is parameterised, and we provide a result for that case also. Our semiparametric estimates employ nonparametric series estimation, which avoids some complications and conditions in kernel approaches featured in much work on adaptive estimation of time series models; our work thus also contributes to methods and theory for nonfractional time series models, such as autoregressive moving averages. A Monte Carlo study of finite sample performance of the semiparametric estimates is included.
Keywords: Fractional processes; efficient semiparametric estimation; adaptive estimation; nonstationary processes; series estimation; M-estimation. (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Pages: 55 pages
Date: 2004-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://eprints.lse.ac.uk/2126/ Open access version. (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:2126
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager (lseresearchonline@lse.ac.uk).