EconPapers    
Economics at your fingertips  
 

Normalized least-squares estimation in time-varying ARCH models

Piotr Fryzlewicz, Theofanis Sapatinas and Suhasini Subba Rao

LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library

Abstract: We investigate the time-varying ARCH (tvARCH) process. It is shown that it can be used to describe the slow decay of the sample autocorrelations of the squared returns often observed in financial time series, which warrants the further study of parameter estimation methods for the model. Since the parameters are changing over time, a successful estimator needs to perform well for small samples. We propose a kernel normalized-least-squares (kernel-NLS) estimator which has a closed form, and thus outperforms the previously proposed kernel quasi-maximum likelihood (kernel-QML) estimator for small samples. The kernel-NLS estimator is simple, works under mild moment assumptions and avoids some of the parameter space restrictions imposed by the kernel-QML estimator. Theoretical evidence shows that the kernel-NLS estimator has the same rate of convergence as the kernel-QML estimator. Due to the kernel-NLS estimator’s ease of computation, computationally intensive procedures can be used. A prediction-based cross-validation method is proposed for selecting the bandwidth of the kernel-NLS estimator. Also, we use a residual-based bootstrap scheme to bootstrap the tvARCH process. The bootstrap sample is used to obtain pointwise confidence intervals for the kernel-NLS estimator. It is shown that distributions of the estimator using the bootstrap and the “true” tvARCH estimator asymptotically coincide. We illustrate our estimation method on a variety of currency exchange and stock index data for which we obtain both good fits to the data and accurate forecasts.

Keywords: cross-validation; (G)ARCH models; kernel smoothing; least-squares estimation; locally stationary models (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Published in Annals of Statistics, 2008, 36(2), pp. 742-786. ISSN: 0090-5364

Downloads: (external link)
http://eprints.lse.ac.uk/25187/ Open access version. (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:25187

Access Statistics for this paper

More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().

 
Page updated 2025-03-31
Handle: RePEc:ehl:lserod:25187