Semiparametric estimation for stationary processes whose spectra have an unknown pole
Javier Hidalgo
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
We consider the estimation of the location of the pole and memory parameter, λ0 and α respectively, of covariance stationary linear processes whose spectral density function f(λ) satisfies f(λ) ∼ C|λ − λ0|−α in a neighbourhood of λ0. We define a consistent estimator of λ0 and derive its limit distribution Zλ0 . As in related optimization problems, when the true parameter value can lie on the boundary of the parameter space, we show that Zλ0 is distributed as a normal random variable when λ0 ∈ (0, π), whereas for λ0 = 0 or π, Zλ0 is a mixture of discrete and continuous random variables with weights equal to 1/2. More specifically, when λ0 = 0, Zλ0 is distributed as a normal random variable truncated at zero. Moreover, we describe and examine a two-step estimator of the memory parameter α, showing that neither its limit distribution nor its rate of convergence is affected by the estimation of λ0. Thus, we reinforce and extend previous results with respect to the estimation of α when λ0 is assumed to be known a priori. A small Monte Carlo study is included to illustrate the finite sample performance of our estimators.
Keywords: Spectral density estimation; long memory processes; Gaussian Processes (search for similar items in EconPapers)
JEL-codes: C14 C22 (search for similar items in EconPapers)
Pages: 40 pages
Date: 2005-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://eprints.lse.ac.uk/6842/ Open access version. (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:6842
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().