Missing data: a unified taxonomy guided by conditional independence
Marco Doretti,
Sara Geneletti and
Elena Stanghellini
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
Recent work (Seaman et al., 2013; Mealli & Rubin, 2015) attempts to clarify the not always well-understood difference between realised and everywhere definitions of missing at random (MAR) and missing completely at random. Another branch of the literature (Mohan et al., 2013; Pearl & Mohan, 2013) exploits always-observed covariates to give variable-based definitions of MAR and missing completely at random. In this paper, we develop a unified taxonomy encompassing all approaches. In this taxonomy, the new concept of ‘complementary MAR’ is introduced, and its relationship with the concept of data observed at random is discussed. All relationships among these definitions are analysed and represented graphically. Conditional independence, both at the random variable and at the event level, is the formal language we adopt to connect all these definitions. Our paper covers both the univariate and the multivariate case, where attention is paid to monotone missingness and to the concept of sequential MAR. Specifically, for monotone missingness, we propose a sequential MAR definition that might be more appropriate than both everywhere and variable-based MAR to model dropout in certain contexts.
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2018-08-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Published in International Statistical Review, 1, August, 2018, 86(2), pp. 189-204. ISSN: 0306-7734
Downloads: (external link)
http://eprints.lse.ac.uk/87227/ Open access version. (application/pdf)
Related works:
Journal Article: Missing Data: A Unified Taxonomy Guided by Conditional Independence (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:87227
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().