Forecasting own brand sales: Does incorporating competition help?
Wei Li,
Dennis Fok and
Philip Hans Franses
No EI2019-35, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
This study aims to investigate how much value is added to traditional sales forecast- ing models in marketing by using modern techniques like factor models, Lasso, elastic net, random forest and boosting methods. A benchmark model uses only the focal brand's own information, while the other models include competitive sales and market- ing activities in various ways. An Average Competitor Model (ACM) summarises all competitive information by averages. Factor-augmented models incorporate all or some competitive information by means of common factors. Lasso and elastic net models shrink the coecient estimates of specic competing brands towards zero by adding a shrinkage penalty to the sum of squared residuals. Random forest averages many tree models obtained from bootstrapped samples. Boosting trees grow many small trees sequentially and then average over all the tree models to deliver forecasts. We use these methods to forecast sales of packaged goods one week ahead and compare their pre- dictive performance. Our empirical results for 169 brands across 31 product categories show that the Lasso and elastic net are the safest methods to employ as they are better than the benchmark for most of the brands. The random forest method has better improvement for some of the brands.
Keywords: Sales forecasting; high-dimensional data; principal components; factor model; Lasso; Elastic Net; random forest; boosting; data mining (search for similar items in EconPapers)
Pages: 28
Date: 2019-10-10
New Economics Papers: this item is included in nep-big, nep-com, nep-for and nep-ipr
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://repub.eur.nl/pub/123417/EI2019-35.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:123417
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).