Conic convex programming and self-dual embedding
Z-Q. Luo,
J.F. Sturm and
Shuzhong Zhang
No EI 9815, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
How to initialize an algorithm to solve an optimization problem is of great theoretical and practical importance. In the simplex method for linear programming this issue is resolved by either the two-phase approach or using the so-called big M technique. In the interior point method, there is a more elegant way to deal with the initialization problem, viz. the self-dual embedding technique proposed by Ye, Todd and Mizuno (30). For linear programming this technique makes it possible to identify an optimal solution or conclude the problem to be infeasible/unbounded by solving its embedded self-dual problem. The embedded self-dual problem has a trivial initial solution and has the same structure as the original problem. Hence, it eliminates the need to consider the initialization problem at all. In this paper, we extend this approach to solve general conic convex programming, including semidefinite programming. Since a nonlinear conic convex programming problem may lack the so-called strict complementarity property, it causes difficulties in identifying solutions for the original problem, based on solutions for the embedded self-dual system. We provide numerous examples from semidefinite programming to illustrate various possibilities which have no analogue in the linear programming case.
Keywords: conic convex programming; initialization; interior point method; self-duality; semidefinite programming (search for similar items in EconPapers)
Date: 1998-12-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://repub.eur.nl/pub/1554/1554_ps.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:1554
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).