LQ Control without Riccati Equations: Stochastic Systems
David Yao,
Shuzhong Zhang and
Xun Yu Zhou
No EI 9920-/A, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
We study stochastic linear--quadratic (LQ) optimal control problems over an infinite horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control; and we show this can be effectively examined through the complementary duality of the SDP. Furthermore, we establish several implication relations among the SDP complementary duality, the (generalized) Riccati equation, and the optimality of the LQ control problem. Based on these relations, we propose a numerical procedure that provides a thorough treatment of the LQ control problem via SDP: it identifies a stabilizing feedback control that is optimal or determines that the problem possesses no optimal solution. For the latter case, we develop an ε-approximation scheme that is asymptotically optimal.
Keywords: complementary duality; generalized Riccati equation; mean-square stability; semidefinite programming; stochastic LQ control (search for similar items in EconPapers)
Date: 1999-05-26
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:1590
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub (peter.vanhuisstede@eur.nl this e-mail address is bad, please contact repec@repec.org).