Inference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation
Marius Ooms and
Jurgen Doornik
No EI 9947/A, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
We discuss computational aspects of likelihood-based specification, estimation,inference, and forecasting of possibly nonstationary series with long memory. We use the \\ARFIMA$(p,d,q)$ model with deterministic regressors and we compare sampling characteristics of approximate and exact first-order asymptotic methods. We extend the analysis using a higher-order asymptotic method, suggested by \\cite{CoxRe.87}. Efficient computation and simulation allow us to apply parametric bootstrap inference as well. We investigate the relevance of the differences between the methods for the time-series analysis of monthly core consumer price inflation in the US and quarterly overall consumer price inflation in the UK. We concentrate on (stationarity) tests for the order of integration and on inference for out-of-sample forecasts of the price level.
Keywords: ARFIMA-GARCH; bias correction; bootstrap test; higher order asymptotics; modified profile likelihood (search for similar items in EconPapers)
Date: 1999-12-08
References: Add references at CitEc
Citations: View citations in EconPapers (20)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:1619
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).