EconPapers    
Economics at your fingertips  
 

A dynamic lot-sizing model with demand time windows

Chung-Yee Lee, S. Cetinkaya and Albert Wagelmans

No EI 9948-/A, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute

Abstract: One of the basic assumptions of the classical dynamic lot-sizing model is that the aggregate demand of a given period must be satisfied in that period. Under this assumption, if backlogging is not allowed then the demand of a given period cannot be delivered earlier or later than the period. If backlogging is allowed, the demand of a given period cannot be delivered earlier than the period, but can be delivered later at the expense of a backordering cost. Like most mathematical models, the classical dynamic lot-sizing model is a simplified paraphrase of what might actually happen in real life. In most real life applications, the customer offers a grace period - we call it a demand time window - during which a particular demand can be satisfied with no penalty. That is, in association with each demand, the customer specifies an earliest and a latest delivery time. The time interval characterized by the earliest and latest delivery dates of a demand represents the corresponding time window. This paper studies the dynamic lot-sizing problem with demand time windows and provides polynomial time algorithms for computing its solution. If shortages are not allowed, the complexity of the proposed algorithm is of the order T square. When backlogging is allowed, the complexity of the proposed algorithm is of the order T cube.

Keywords: dynamic programming; lot-sizing; time windows (search for similar items in EconPapers)
Date: 1999-12-08
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://repub.eur.nl/pub/1620/1_feweco19991208101453.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:1620

Access Statistics for this paper

More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub (peter.vanhuisstede@eur.nl this e-mail address is bad, please contact repec@repec.org).

 
Page updated 2025-03-19
Handle: RePEc:ems:eureir:1620