Axiomatic Characterization of the Antimedian Function on Paths and Hypercubes
Kannan Balakrishnan,
Manoj Changat,
Martyn Mulder and
Ajitha Subhamathi
No EI 2011-08, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
An antimedian of a profile $\\pi = (x_1, x_2, \\ldots , x_k)$ of vertices of a graph $G$ is a vertex maximizing the sum of the distances to the elements of the profile. The antimedian function is defined on the set of all profiles on $G$ and has as output the set of antimedians of a profile. It is a typical location function for finding a location for an obnoxious facility. The `converse' of the antimedian function is the median function, where the distance sum is minimized. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper such a characterization is obtained for the two classes of graphs on which the antimedian is well-behaved: paths and hypercubes.
Keywords: Antimedian; consensus axiom; consensus function; consistency; hypercube; path (search for similar items in EconPapers)
Date: 2011-03-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://repub.eur.nl/pub/22803/EI2011-08.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:22803
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).