Optimal continuous order quantity (s,S) policies - the 45-degrees algorithm
Emö Bazsa-Oldenkamp and
P. den Iseger
No EI 2002-47, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
The most recent optimization algorithm for (s,S) order policies with continuous demand was developed by Federgruen and Zipkin (1985). This was also the first efficient algorithm, which uses policy iteration instead of discretization. Zheng and Federgruen (1991) developed an even more efficient algorithm for computing discrete order quantity (s,S) inventory policies. Since the continuous case prohibits enumeration, this algorithm does not apply to continuous order quantity systems. In this paper an efficient algorithm for continuous order quantity (s,S) policies is developed. A marginal cost approach is used for determining the optimal s. Furthermore, we construct two aid functions (generated by the optimality conditions for s and S), and exploiting their special properties a simple and efficient algorithm is obtained. The algorithm converges monotonically, such that at every iteration a policy improvement is obtained. Since every iteration finds a local minimum of the expected average cost, the number of iterations is at most N, where N
Date: 2003-07-04
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://repub.eur.nl/pub/533/feweco20021219120649.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:533
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).