Constancy of distributions: asymptotic efficiency of certain nonparametric tests of constancy
Alex Koning and
N.L. Hjort
No EI 2002-33, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
In this paper we study stochastic processes which enable monitoring the possible changes of probability distributions over time. These so-called monitoring processes are bivariate functions of time and position at the measurement scale, and in particular be used to test the null hypothesis of no change: one may then form Kolmogorov--Smirnov or other type of tests as functionals of the processes. In Hjort and Koning (2001) Cram??r-type deviation results were obtained under the constancy null hypothesis for [bootstrapped versions of] such ``derived'' test statistics. Here the behaviour of derived test statistics is investigated under alternatives in the vicinity of the constancy hypothesis. When combined with Cram??r-type deviation results, the results in this paper enable the computation of efficiencies of the corresponding tests. The discussion of some examples of yield guidelines for the choice of the test statistic, and hence for the underlying monitoring process.
Keywords: Asymptotic efficiency; Constancy of distributions; Empirical distribution functions; Kernel density estimator (search for similar items in EconPapers)
Date: 2002-09-20
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://repub.eur.nl/pub/548/feweco20020920122925.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:548
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub (peter.vanhuisstede@eur.nl this e-mail address is bad, please contact repec@repec.org).