How to find frequent patterns?
Wim Pijls and
W.A. Koster
No EI 2005-24, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
An improved version of DF, the depth-first implementation of Apriori, is presented. Given a database of (e.g., supermarket) transactions, the DF algorithm builds a so-called trie that contains all frequent itemsets, i.e., all itemsets that are contained in at least `minsup' transactions with `minsup' a given threshold value. In the trie, there is a one-to-one correspondence between the paths and the frequent itemsets. The new version, called DF+, differs from DF in that its data structure representing the database is borrowed from the FP-growth algorithm. So it combines the compact FP-growth data structure with the efficient trie-building method in DF.
Date: 2005-06-01
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://repub.eur.nl/pub/6850/ei2005-24.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:6850
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).