Solving and interpreting binary classification problems in marketing with SVMs
Cor Bioch,
Patrick Groenen (groenen@ese.eur.nl) and
Georgi Nalbantov
No EI 2005-46, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
Marketing problems often involve inary classification of customers into ``buyers'' versus ``non-buyers'' or ``prefers brand A'' versus ``prefers brand B''. These cases require binary classification models such as logistic regression, linear, and quadratic discriminant analysis. A promising recent technique for the binary classification problem is the Support Vector Machine (Vapnik (1995)), which has achieved outstanding results in areas ranging from Bioinformatics to Finance. In this paper, we compare the performance of the Support Vector Machine against standard binary classification techniques on a marketing data set and elaborate on the interpretation of the obtained results.
Date: 2005-11-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://repub.eur.nl/pub/7038/ei2005-46.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:7038
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub (peter.vanhuisstede@eur.nl this e-mail address is bad, please contact repec@repec.org).