EconPapers    
Economics at your fingertips  
 

On noncooperative games, minimax theorems and equilibrium problems

Hans Frenk and G. Kassay

No EI 2006-21, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute

Abstract: In this chapter we give an overview on the theory of noncooperative games. In the first part we consider in detail for zero-sum (and constant-sum) noncooperative games under which necessary and sufficient conditions on the payoff function and different (extended) strategy sets for both players an equilibrium saddlepoint exists. This is done by using the most elementary proofs. One proof uses the separation result for disjoint convex sets, while the other proof uses linear programming duality and some elementary properties of compact sets. Also, for the most famous saddlepoint result given by Sion's minmax theorem an elementary proof using only the definition of connectedness is given. In the final part we consider n-person nonzero-sum noncooperative games and show by a simple application of the KKM lemma that a so-called Nash equilibrium point exists for compact strategy sets and concavity conditions on the payoff functions.

Date: 2006-05-11
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://repub.eur.nl/pub/7756/ei2006-21.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:7756

Access Statistics for this paper

More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).

 
Page updated 2025-03-19
Handle: RePEc:ems:eureir:7756