Estimating the market share attraction model using support vector regressions
Georgi Nalbantov,
Philip Hans Franses,
Cor Bioch and
Patrick Groenen ()
No EI 2007-06, Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute
Abstract:
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the Market Share Attraction Model are estimated via a Maximum Likelihood (ML) procedure, assuming that the data are drawn from a conditional Gaussian distribution. However, if the distribution is unknown, ML estimation may seriously fail (Vapnik, 1982). One way to tackle this problem is to introduce a linear loss function over the errors and a penalty on the magnitude of model coefficients. This leads to qualities such as robustness to outliers and avoidance of the problem of over¯tting. This kind of estimation forms the basis of the SVR technique, which, as we will argue, makes it a good candidate for solving the Market Share Attraction Model. We test the SVR approach to predict (the evolution of) the market shares of 36 car brands simultaneously and report stronger results than when using a ML estimation procedure.
Date: 2007-01-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://repub.eur.nl/pub/8528/ei200706.pdf (application/pdf)
Related works:
Journal Article: Estimating the Market Share Attraction Model using Support Vector Regressions (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureir:8528
Access Statistics for this paper
More papers in Econometric Institute Research Papers from Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).