Map Based Visualization of Product Catalogs
Martijn Kagie (),
Michiel van Wezel and
Patrick Groenen ()
ERIM Report Series Research in Management from Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam
Abstract:
Traditionally, recommender systems present recommendations in lists to the user. In content- and knowledge-based recommendation systems these list are often sorted on some notion of similarity with a query, ideal product specification, or sample product. However, a lot of information is lost in this way, since two even similar products can differ from the query on a completely different set of product characteristics. When using a two dimensional, that is, a map-based, representation of the recommendations, it is possible to retain this information. In the map we can then position recommendations that are similar to each other in the same area of the map. Both in science and industry an increasing number of two dimensional graphical interfaces have been introduced over the last years. However, some of them lack a sound scientific foundation, while other approaches are not applicable in a recommendation setting. In our chapter, we will describe a framework, which has a solid scientific foundation (using state-of-the-art statistical models) and is specifically designed to work with e-commerce product catalogs. Basis of the framework is the Product Catalog Map interface based on multidimensional scaling. Also, we show another type of interface based on nonlinear principal components analysis, which provides an easy way in constraining the space based on specific characteristic values. Then, we discuss some advanced issues. Firstly, we discuss how the product catalog interface can be adapted to better fit the users' notion of importance of attributes using click stream analysis. Secondly, we show an user interface that combines recommendation by proposing with the map based approach. Finally, we show how these methods can be applied to a real e-commerce product catalog of MP3-players.
Keywords: dissimilarity measure; map-based interface; multidimensional scaling; nonlinear principal components analysis; recommender systems (search for similar items in EconPapers)
JEL-codes: C44 C88 L15 L81 M M31 (search for similar items in EconPapers)
Date: 2009-03-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://repub.eur.nl/pub/15142/ERS-2009-010-MKT.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureri:15142
Access Statistics for this paper
More papers in ERIM Report Series Research in Management from Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).