Combining expert knowledge and databases for risk management
Hennie Daniels and
Han van Dissel
ERIM Report Series Research in Management from Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam
Abstract:
Correctness, transparency and effectiveness are the principal attributes of knowledge derived from databases. In current data mining research there is a focus on efficiency improvement of algorithms for knowledge discovery. However important limitations of data mining can only be dissolved by the integration of knowledge of experts in the field, encoded in some accessible way, with knowledge derived form patterns in the database. In this paper we will in particular discuss methods for combining expert knowledge and knowledge derived from transaction databases.The framework proposed is applicable to wide variety of risk management problems. We will illustrate the method in a case study on fraud discovery in an insurance company.
Keywords: datamining; knowledge based systems; knowledge discovery; risk management (search for similar items in EconPapers)
JEL-codes: D83 M M11 R4 (search for similar items in EconPapers)
Date: 2003-01-10
References: Add references at CitEc
Citations:
Downloads: (external link)
https://repub.eur.nl/pub/266/erimrs20030110180000.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ems:eureri:266
Access Statistics for this paper
More papers in ERIM Report Series Research in Management from Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam Contact information at EDIRC.
Bibliographic data for series maintained by RePub ( this e-mail address is bad, please contact ).