The Generalized Extreme Value (GEV) Distribution, Implied Tail Index and Option Pricing
Sheri Markose and
Amadeo Alentorn
Economics Discussion Papers from University of Essex, Department of Economics
Abstract:
Crisis events such as the 1987 stock market crash, the Asian Crisis and the bursting of the Dot-Com bubble have radically changed the view that extreme events in financial markets have negligible probability. This paper argues that the use of the Generalized Extreme Value (GEV) distribution to model the Risk Neutral Density (RND) function provides a flexible framework that captures the negative skewness and excess kurtosis of returns, and also delivers the market implied tail index of asset returns. We obtain an original analytical closed form solution for the Harrison and Pliska (1981) no arbitrage equilibrium price for the European option in the case of GEV asset returns. The GEV based option prices successfully remove the well known pricing bias of the Black-Scholes model. We explain how the implied tail index is efficacious at identifying the fat tailed behaviour of losses and hence the left skewness of the price RND functions, particularly around crisis events.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://repository.essex.ac.uk/3726/ original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:esx:essedp:3726
Ordering information: This working paper can be ordered from
Discussion Papers Administrator, Department of Economics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
Access Statistics for this paper
More papers in Economics Discussion Papers from University of Essex, Department of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Essex Economics Web Manager ().