EconPapers    
Economics at your fingertips  
 

Where strategic and evolutionary stability depart - a study of minimal diversity games

Dieter Balkenborg, Stefano Demichelis and Dries Vermeulen
Additional contact information
Stefano Demichelis: Department of Mathematics, University of Pavia

No 1001, Discussion Papers from University of Exeter, Department of Economics

Abstract: A minimal diversity game is an n player strategic form game in which each player has m pure strategies at his disposal. The payoff to each player is always 1, unless all players select the same pure strategy, in which case all players receive zero payoff. Such a game has a unique isolated completely mixed Nash equilibrium in which each player plays each strategy with equal probability, and a connected component of Nash equilibria consisting of those strategy profiles in which each player receives payoff 1. The Pareto superior component is shown to be asymptotically stable under a wide class of evolutionary dynamics, while the isolated equilibrium is not. On the other hand, the isolated equilibrium is strategically stable, while the strategic stability of the Pareto efficient component depends on the dimension of the component, and hence on the number of players, and the number of pure strategies.

Keywords: Strategic form games; strategic stability; evolutionary stability (search for similar items in EconPapers)
JEL-codes: C72 D44 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://exetereconomics.github.io/RePEc/dpapers/DP1001.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:exe:wpaper:1001

Access Statistics for this paper

More papers in Discussion Papers from University of Exeter, Department of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sebastian Kripfganz ().

 
Page updated 2025-03-19
Handle: RePEc:exe:wpaper:1001