Oligopolistic competition under knightian uncertainty
Hugo Pedro Boff and
Sergio Werlang
No 282, FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) from EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil)
Abstract:
This artic/e applies a theorem of Nash equilibrium under uncertainty (Dow & Werlang, 1994) to the classic Coumot model of oligopolistic competition. It shows, in particular, how one can map all Coumot equilibrium (which includes the monopoly and the null solutions) with only a function of uncertainty aversion coefficients of producers. The effect of variations in these parameters over the equilibrium quantities are studied, also assuming exogenous increases in the number of matching firms in the game. The Cournot solutions under uncertainty are compared with the monopolistic one. It shows principally that there is an uncertainty aversion level in the industry such that every aversion coefficient beyond it induces firms to produce an aggregate output smaller than the monopoly output. At the end of the artic/e equilibrium solutions are specialized for Linear Demand and for Coumot duopoly. Equilibrium analysis in the symmetric case allows to identify the uncertainty aversion coefficient for the whole industry as a proportional lack of information cost which would be conveyed by market price in the perfect competition case (Lerner Index).
Date: 1996-07
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://repositorio.fgv.br/bitstreams/63b44e05-5e8 ... 4ed762a1907/download (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fgv:epgewp:282
Access Statistics for this paper
More papers in FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) from EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil) Contact information at EDIRC.
Bibliographic data for series maintained by Núcleo de Computação da FGV EPGE ().