(IAM Series No 003) Simple Tests for Models of Dependence Between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates
Yanqin Fan,
Xiaohong Chen () and
Andrew Patton
FMG Discussion Papers from Financial Markets Group
Abstract:
Evidence that asset returns are more highly correlated during volatile markets and during market downturns (see Longin and Solnik, 2001, and Ang and Chen, 2002) has lead some researchers to propose alternative models of dependence. In this paper we develop two simple goodness-of-fit tests for such models. We use these tests to determine whether the multivariate Normal or the Student’s t copula models are compatible with U.S. equity return and exchange rate data. Both tests are robust to specifications of marginal distributions, and are based on the multivariate probability integral transform and kernel density estimation. The first test is consistent but requires the estimation of a multivariate density function and is recommended for testing the dependence structure between a small number of assets. The second test may not be consistent against all alternatives but it requires kernel estimation of only a univariate density function, and hence is useful for testing the dependence structure between a large number of assets. We justify our tests for both observable multivariate strictly stationary time series and for standardized innovations of GARCH models. A simulation study demonstrates the efficiency of both tests. When applied to equity return data and exchange rate return data, we find strong evidence against the normal copula, but little evidence against the more flexible Student’s t copula.
Date: 2004-02
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.lse.ac.uk/fmg/workingPapers/discussionPapers/fmgdps/dp483.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fmg:fmgdps:dp483
Access Statistics for this paper
More papers in FMG Discussion Papers from Financial Markets Group
Bibliographic data for series maintained by The FMG Administration ().