Bootstrap Bandwidth Selection in Kernel Density Estimation from a Contaminated Sample
A. Delaigle and
I. Gijbels
Working Papers from Catholique de Louvain - Institut de statistique
Abstract:
In this paper we consider kernel estimation of a density when the data are contaminated by random noise. More specifically we deal with the problem of how to choose the bandwidth parameter in practice.
Keywords: EVALUATION; BANDWIDTH; BOOTSTRAP (search for similar items in EconPapers)
JEL-codes: C13 C15 C45 C91 (search for similar items in EconPapers)
Pages: 36 pages
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fth:louvis:0116
Access Statistics for this paper
More papers in Working Papers from Catholique de Louvain - Institut de statistique Universite Catholique de Louvain, Institut de Statistique, Voie du Roman Pays, 34 B-1348 Louvain- La-Neuve, Belgique..
Bibliographic data for series maintained by Thomas Krichel (krichel@openlib.org).