EconPapers    
Economics at your fingertips  
 

An Introduction to Systematic Sensitivity Analysis via Gaussian Quadrature

Channing Arndt ()

GTAP Technical Papers from Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University

Abstract: 1996, July Economists recognize that results from simulation models are dependent, sometimes highly dependent, on values employed for critical exogenous variables. To account for this, analysts sometimes conduct sensitivity analysis with respect to key exogenous variables. This paper presents a practical approach for conducting systematic sensitivity analysis, called Gaussian quadrature. The approach views key exogenous variables as random variables with associated distributions. It produces estimates of means and standard deviations of model results while requiring a limited number of solves of the model. Under mild conditions, all of which hold with respect to the GTAP Model, there is strong reason to believe that the estimates of means and standard deviations will be quite accurate.

Date: 1996
Note: GTAP Technical Paper No. 02
References: Add references at CitEc
Citations: View citations in EconPapers (62) Track citations by RSS feed

Downloads: (external link)
https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=305 (text/html)

Related works:
Working Paper: AN INTRODUCTION TO SYSTEMATIC SENSITIVITY ANALYSIS VIA GAUSSIAN QUADRATURE (1996) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gta:techpp:305

Access Statistics for this paper

More papers in GTAP Technical Papers from Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University Contact information at EDIRC.
Bibliographic data for series maintained by Jeremy Douglas ().

 
Page updated 2020-06-22
Handle: RePEc:gta:techpp:305