Improving portfolios global performance using a cleaned and robust covariance matrix estimate
Emmanuelle Jay (),
Thibault Soler (),
Eugénie Terreaux (),
Jean-Philippe Ovarlez (),
Frédéric Pascal (),
Philippe de Peretti () and
Christophe Chorro ()
Additional contact information
Emmanuelle Jay: QAMLab - QAMLab
Thibault Soler: Fideas Capital
Eugénie Terreaux: SONDRA - Sondra, CentraleSupélec, Université Paris-Saclay - ONERA - CentraleSupélec - Université Paris-Saclay
Jean-Philippe Ovarlez: DEMR, ONERA, Université Paris Saclay [Palaiseau] - ONERA - Université Paris-Saclay
Frédéric Pascal: L2S - Laboratoire des signaux et systèmes - UP11 - Université Paris-Sud - Paris 11 - CentraleSupélec - CNRS - Centre National de la Recherche Scientifique
Philippe de Peretti: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Christophe Chorro: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Date: 2020-03-15
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Published in Soft Computing, 2020, ⟨10.1007/s00500-020-04840-9⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:cesptp:hal-02508748
DOI: 10.1007/s00500-020-04840-9
Access Statistics for this paper
More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().