Economics at your fingertips  

Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages

Thomas Renault
Additional contact information
Thomas Renault: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique

Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL

Abstract: We use a large dataset of one million messages sent on the microblogging platform StockTwits to evaluate the performance of a wide range of preprocessing methods and machine learning algorithms for sentiment analysis in finance. We find that adding bigrams and emojis significantly improve sentiment classification performance. However, more complex and time-consuming machine learning methods, such as random forests or neural networks, do not improve the accuracy of the classification. We also provide empirical evidence that the preprocessing method and the size of the dataset have a strong impact on the correlation between investor sentiment and stock returns. While investor sentiment and stock returns are highly correlated, we do not find that investor sentiment derived from messages sent on social media helps in predicting large capitalization stocks return at a daily frequency.

Keywords: Social media; StockTwits; Sentiment analysis; Machine learning; Asset pricing (search for similar items in EconPapers)
Date: 2020-09
Note: View the original document on HAL open archive server:
References: Add references at CitEc
Citations: Track citations by RSS feed

Published in Digital Finance, Springer, 2020, 2 (1-2), pp.1-13. ⟨10.1007/s42521-019-00014-x⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1007/s42521-019-00014-x

Access Statistics for this paper

More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().

Page updated 2021-06-29
Handle: RePEc:hal:cesptp:hal-03205149