Adaptive Multilevel Stochastic Approximation of the Value-at-Risk
Approximation stochastique adaptative à plusieurs niveaux de la valeur à risque
Stéphane Crépey (),
Noufel Frikha (),
Azar Louzi () and
Jonathan Spence ()
Additional contact information
Stéphane Crépey: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Noufel Frikha: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Azar Louzi: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Jonathan Spence: Maxwell Institute for Mathematical Sciences, School of Mathematics - University of Edinburgh - The University of Edinburgh
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Abstract:
Crépey, Frikha, and Louzi (2023) introduced a multilevel stochastic approximation scheme to compute the value-at-risk of a financial loss that is only simulatable by Monte Carlo. The optimal complexity of the scheme is in $O(\varepsilon^{-5/2})$, $\varepsilon>0$ being a prescribed accuracy, which is suboptimal when compared to the canonical multilevel Monte Carlo performance. This suboptimality stems from the discontinuity of the Heaviside function involved in the biased stochastic gradient that is recursively evaluated to derive the value-at-risk. To mitigate this issue, this paper proposes and analyzes a multilevel stochastic approximation algorithm that adaptively selects the number of inner samples at each level, and proves that its optimal complexity is in $O(\varepsilon^{-2}|\ln{\varepsilon}|^{5/2})$. Our theoretical analysis is exemplified through numerical experiments.
Keywords: stochastic approximation; value-at-risk; nested Monte Carlo; multilevel Monte Carlo; adaptive Monte Carlo (search for similar items in EconPapers)
Date: 2024-08-13
Note: View the original document on HAL open archive server: https://hal.science/hal-04670735v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://hal.science/hal-04670735v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:cesptp:hal-04670735
Access Statistics for this paper
More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().