EconPapers    
Economics at your fingertips  
 

Metric and latticial medians

Bernard Monjardet, Jean-Pierre Barthélemy, Olivier Hudry () and Bruno Leclerc
Additional contact information
Jean-Pierre Barthélemy: LUSSI - Département Logique des Usages, Sciences sociales et Sciences de l'Information - UEB - Université européenne de Bretagne - European University of Brittany - Télécom Bretagne - IMT - Institut Mines-Télécom [Paris]
Olivier Hudry: TSP - INF - Département Informatique - IMT - Institut Mines-Télécom [Paris] - TSP - Télécom SudParis - IP Paris - Institut Polytechnique de Paris
Bruno Leclerc: CAMS - Centre d'Analyse et de Mathématique sociales - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique

Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL

Abstract: This paper presents the -linked- notions of metric and latticial medians and it explains what is the median procedure for the consensus problems, in particular in the case of the aggregation of linear orders. First we consider the medians of a v-tuple of arbitrary or particular binary relations.. Then we study in depth the difficult (in fact NP-difficult) problem of finding the median orders of a profile of linear orders. More generally, we consider the medians of v-tuples of elements of a semilattice and we describe the median semilattices, i.e. the semilattices were medians are easily computable.

Keywords: agrégation; consensus; demi-treillis à médiane; médiane; médiane métrique; médiane latticielle; ordres médians; aggregation; latticial median; median orders; median; median semilattice; metric median (search for similar items in EconPapers)
Date: 2009-06
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00408174v1
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Published in Denis Bouyssou, Didier Dubois, Marc Pirlot, Henri Prade. Decision-making Process: Concepts and Methods, Wiley, pp.811-856, 2009

Downloads: (external link)
https://shs.hal.science/halshs-00408174v1/document (application/pdf)

Related works:
Working Paper: Metric and latticial medians (2009) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:cesptp:halshs-00408174

Access Statistics for this paper

More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-04-01
Handle: RePEc:hal:cesptp:halshs-00408174