On the continuous representation of quasi-concave mappings by their upper level sets
Philippe Bich ()
Additional contact information
Philippe Bich: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Abstract:
We provide a continuous representation of quasi-concave mappings by their upper level sets. A possible motivation is the extension to quasi-concave mappings of a result by Ulam and Hyers, which states that every approximately convex mapping can be approximated by a convex mapping.
Keywords: Quasi-concavité; surface de niveau; upper level set; Quasi-concave (search for similar items in EconPapers)
Date: 2009-10
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00426403v1
References: Add references at CitEc
Citations:
Published in 2009
Downloads: (external link)
https://shs.hal.science/halshs-00426403v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:cesptp:halshs-00426403
Access Statistics for this paper
More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().