EconPapers    
Economics at your fingertips  
 

A modified Panjer algorithm for operational risk capital calculations

Dominique Guegan () and Bertrand Hassani ()
Additional contact information
Dominique Guegan: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Bertrand Hassani: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique

Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL

Abstract: Operational risk management inside banks and insurance companies is an important task. The computation of a risk measure associated to these kinds of risks lies in the knowledge of the so-called loss distribution function (LDF). Traditionally, this LDF is computed via Monte Carlo simulations or using the Panjer recursion, which is an iterative algorithm. In this paper, we propose an adaptation of this last algorithm in order to improve the computation of convolutions between Panjer class distributions and continuous distributions, by mixing the Monte Carlo method, a progressive kernel lattice and the Panjer recursion. This new hybrid algorithm does not face the traditional drawbacks. This simple approach enables us to drastically reduce the variance of the estimated value-at-risk associated with the operational risks and to lower the aliasing error we would have using Panjer recursion itself. Furthermore, this method is much less timeconsuming than a Monte Carlo simulation. We compare our new method with more sophisticated approaches already developed in operational risk literature.

Keywords: convolution; Operational risk; Panjer algorithm; Kernel; numerical integration; convolution. (search for similar items in EconPapers)
Date: 2009-10
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00443846v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Published in Journal of Operational Risk, 2009, 4 (4), pp.53-72

Downloads: (external link)
https://shs.hal.science/halshs-00443846v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:cesptp:halshs-00443846

Access Statistics for this paper

More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:cesptp:halshs-00443846