On the existence of Pairwise stable weighted networks
Philippe Bich () and
Lisa Morhaim
Additional contact information
Philippe Bich: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Lisa Morhaim: CRED - Centre de Recherche en Economie et Droit - UP2 - Université Panthéon-Assas
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Abstract:
In network theory, Jackson and Wolinsky introduced a now widely used notion of stability for unweighted network formation called pairwise stability. We prove the existence of pairwise stable weighted networks under assumptions on payoffs that are similar to those in Nash's and Glicksberg's existence theorem (continuity and quasi concavity). Then, we extend our result, allowing payoffs to depend not only on the network, but also on some game-theoretic strategies. The proof is not a standard application of tools from game theory, the difficulty coming from the fact that the pairwise stability notion has both cooperative and noncooperative features. Last, some examples are given and illustrate how our results may open new paths in the literature on network formation.
Keywords: Pairwise Stable Network; Weighted Network (search for similar items in EconPapers)
Date: 2020-11
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Published in Mathematics of Operations Research, 2020, 45 (4), pp.1393-1404. ⟨10.1287/moor.2019.1032⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:cesptp:halshs-03969712
DOI: 10.1287/moor.2019.1032
Access Statistics for this paper
More papers in Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) from HAL
Bibliographic data for series maintained by CCSD ().