EconPapers    
Economics at your fingertips  
 

Ionic transport of alkali in borosilicate glass. Role of alkali nature on glass structure and on ionic conductivity at the glassy state

Muriel Neyret, Marion Lenoir, Agnès Grandjean (), Nicolas Massoni (), Bruno Penelon and Mohammed Malki
Additional contact information
Muriel Neyret: DTCD - Département d'études du Traitement et du Conditionnement des Déchets - CEA-DES (ex-DEN) - CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Marion Lenoir: DTCD - Département d'études du Traitement et du Conditionnement des Déchets - CEA-DES (ex-DEN) - CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Agnès Grandjean: DTCD - Département d'études du Traitement et du Conditionnement des Déchets - CEA-DES (ex-DEN) - CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Nicolas Massoni: DTCD - Département d'études du Traitement et du Conditionnement des Déchets - CEA-DES (ex-DEN) - CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Bruno Penelon: DTCD - Département d'études du Traitement et du Conditionnement des Déchets - CEA-DES (ex-DEN) - CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Mohammed Malki: CEMHTI - Conditions Extrêmes et Matériaux : Haute Température et Irradiation - UO - Université d'Orléans - INC-CNRS - Institut de Chimie - CNRS Chimie - CNRS - Centre National de la Recherche Scientifique, Ecole Polytechnique de l'Université d'Orléans - UO - Université d'Orléans

Post-Print from HAL

Abstract: Ionic transport of alkali was investigated in the SiO2–B2O3–R2O glass system (with R = Li, Na, K or Cs) by using impedance spectroscopy measurements at the glassy state. Transport mechanisms are also understood on the basis of glass structural analysis, such as X-ray total scattering and Raman spectroscopy, which helped to describe the alkali distribution and the network structure of borosilicate glasses. It was shown that an alkali size increase induces a glass network expansion, with weaker binding forces between alkali and non-bridging oxygens (NBO) and a change in network polymerization, with a Q3 unit increase and a "quasi-absence" of borosilicate unit in the case of lithium glass. The glass structure evolution with alkali size leads to a change in its macroscopic properties, especially glass transition temperature and electrical conductivity. The alkali conduction mechanism is described by an interstitial pair migration based on Frenkel defects in ionic crystals, which is thermally activated. Based on electrical conductivity data, activation energy of conductivity and alkali jump distances were calculated. The latter were linked to the values of bond lengths as determined by X-ray total scattering experiments, which pointed out a likely heterogeneous distribution of alkali in the borosilicate glasses studied.

Date: 2015-02
References: Add references at CitEc
Citations:

Published in Journal of Non-Crystalline Solids, 2015, 410, pp.74-81. ⟨10.1016/j.jnoncrysol.2014.12.002⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:cea-03189924

DOI: 10.1016/j.jnoncrysol.2014.12.002

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:cea-03189924