Computing uniform convex approximations for convex envelopes and convex hulls
Rida Laraki (rida.laraki@dauphine.fr) and
Jean-Bernard Lasserre (lasserre@laas.fr)
Additional contact information
Rida Laraki: CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Jean-Bernard Lasserre: LAAS-MAC - Équipe Méthodes et Algorithmes en Commande - LAAS - Laboratoire d'analyse et d'architecture des systèmes - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse
Post-Print from HAL
Abstract:
We provide a numerical procedure to compute uniform (convex) approximations {f_{r}} of the convex envelope f of a rational fraction f, on a compact semi-algebraic set D. At each point x in K=co(D), computing f_{r}(x) reduces to solving a semidefinite program. We next characterize the convex hull K=co(D) in terms of the projection of a semi-infinite LMI, and provide outer convex approximations {K_{r}}?K. Testing whether x is not in K reduces to solving finitely many semidefinite programs.
Keywords: Convex envelope; Semi-definite program; Semi-algbraic set; Duality; Enveloppe convexe; Programme semi-défini; Ensemble semi-algébrique; Dualité (search for similar items in EconPapers)
Date: 2008
Note: View the original document on HAL open archive server: https://hal.science/hal-00243009v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Published in Journal of Convex Analysis, 2008, 15 (3), pp.635-654
Downloads: (external link)
https://hal.science/hal-00243009v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00243009
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).