Expansion formulas for European options in a local volatility model
Eric Benhamou (),
Emmanuel Gobet () and
Mohammed Miri ()
Additional contact information
Emmanuel Gobet: MATHFI - Mathématiques financières - LJK - Laboratoire Jean Kuntzmann - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - CNRS - Centre National de la Recherche Scientifique
Mohammed Miri: Pricing Partners - Pricing Partners, MATHFI - Mathématiques financières - LJK - Laboratoire Jean Kuntzmann - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Because of its very general formulation, the local volatility model does not have an analytical solution for European options. In this article, we present a new methodology to derive closed form solutions for the price of any European options. The formula results from an asymptotic expansion, terms of which are Black-Scholes price and related Greeks. The accuracy of the formula depends on the payoff smoothness and it converges with very few terms.
Keywords: Malliavin calculus; small diffusion process; CEV model; Local volatility model; European options; asymptotic expansion (search for similar items in EconPapers)
Date: 2010-06
Note: View the original document on HAL open archive server: https://hal.science/hal-00325939v1
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Published in International Journal of Theoretical and Applied Finance, 2010, 13 (4), pp.603-634. ⟨10.1142/S0219024910005887⟩
Downloads: (external link)
https://hal.science/hal-00325939v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00325939
DOI: 10.1142/S0219024910005887
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().