Multifractal models for asset prices
Emmanuel Bacry () and
J.-F. Muzy ()
Additional contact information
Emmanuel Bacry: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
J.-F. Muzy: SPE - Laboratoire « Sciences pour l’Environnement » (UMR CNRS 6134 SPE) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Post-Print from HAL
Abstract:
We present an overview of multifractal models of asset returns. All the proposed models rely upon the notion of random multiplicative cascades. We focus in more details on the simplest of such models namely the log-normal multifractal random walk. This model can be seen as a stochastic volatility model where the (log-) volatility has a peculiar long-range correlated memory. We briefly address calibration issues of such models and their applications to volatility and Value at Risk (VaR) forecasting.
Date: 2010-05-15
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Published in Encyclopedia of quantitative finance, 2010, pp.1-10. ⟨10.1002/9780470061602.eqf20004⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00604441
DOI: 10.1002/9780470061602.eqf20004
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().