Record statistics and persistence for a random walk with a drift
Satya N. Majumdar,
Gregory Schehr and
Gregor Wergen
Additional contact information
Satya N. Majumdar: LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique
Gregory Schehr: LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique
Gregor Wergen: Institut für Theoretische Physik [Köln] - Universität zu Köln = University of Cologne
Post-Print from HAL
Abstract:
We study the statistics of records of a one-dimensional random walk of n steps, starting from the origin, and in presence of a constant bias c. At each time-step the walker makes a random jump of length \eta drawn from a continuous distribution f(\eta) which is symmetric around a constant drift c. We focus in particular on the case were f(\eta) is a symmetric stable law with a Lévy index 0
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Published in Journal of Physics A General Physics (1968-1972), 2012, 45, pp.355002. ⟨10.1088/1751-8113/45/35/355002⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00744525
DOI: 10.1088/1751-8113/45/35/355002
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().