Stochastic Local Intensity Loss Models with Interacting Particle Systems
Aurélien Alfonsi (),
Céline Labart () and
Jérôme Lelong ()
Additional contact information
Aurélien Alfonsi: CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées
Céline Labart: LAMA - Laboratoire de Mathématiques - USMB [Université de Savoie] [Université de Chambéry] - Université Savoie Mont Blanc - CNRS - Centre National de la Recherche Scientifique
Jérôme Lelong: DAO - Données, Apprentissage et Optimisation - LJK - Laboratoire Jean Kuntzmann - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019]
Post-Print from HAL
Abstract:
It is well-known from the work of Schönbucher (2005) that the marginal laws of a loss process can be matched by a unit increasing time inhomogeneous Markov process, whose deterministic jump intensity is called local intensity. The Stochastic Local Intensity (SLI) models such as the one proposed by Arnsdorf and Halperin (2008) allow to get a stochastic jump intensity while keeping the same marginal laws. These models involve a non-linear SDE with jumps. The first contribution of this paper is to prove the existence and uniqueness of such processes. This is made by means of an interacting particle system, whose convergence rate towards the non-linear SDE is analyzed. Second, this approach provides a powerful way to compute pathwise expectations with the SLI model: we show that the computational cost is roughly the same as a crude Monte-Carlo algorithm for standard SDEs.
Keywords: Interacting particle systems; Loss modelling; Stochastic local intensity model; Credit derivatives; Monte-Carlo Algorithm; Martingale problem; Fokker-Planck equation (search for similar items in EconPapers)
Date: 2016-04
Note: View the original document on HAL open archive server: https://hal.science/hal-00786239v1
References: View complete reference list from CitEc
Citations:
Published in Mathematical Finance, 2016, 26 (2), pp.366-394. ⟨10.1111/mafi.12059⟩
Downloads: (external link)
https://hal.science/hal-00786239v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00786239
DOI: 10.1111/mafi.12059
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().