Exact Statistics of the Gap and Time Interval Between the First Two Maxima of Random Walks
Satya N. Majumdar,
Philippe Mounaix and
Gregory Schehr
Additional contact information
Satya N. Majumdar: LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique
Philippe Mounaix: CPHT - Centre de Physique Théorique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Gregory Schehr: LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We investigate the statistics of the gap, G_n, between the two rightmost positions of a Markovian one-dimensional random walker (RW) after n time steps and of the duration, L_n, which separates the occurrence of these two extremal positions. The distribution of the jumps \eta_i's of the RW, f(\eta), is symmetric and its Fourier transform has the small k behavior 1-\hat{f}(k)\sim| k|^\mu with 0
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Published in Physical Review Letters, 2013, 111, pp.070601
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00861416
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().