From Knothe's transport to Brenier's map and a continuation method for optimal transport
Guillaume Carlier (carlier@ceremade.dauphine.fr),
Alfred Galichon and
Filippo Santambrogio
Additional contact information
Guillaume Carlier: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Filippo Santambrogio: LMO - Laboratoire de Mathématiques d'Orsay - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
A simple procedure to map two probability measures in Rd is the so-called Knothe-Rosenblatt rearrangement, which consists in rearranging monotonically the marginal distributions of the last coordinate, and then the conditional distributions, iteratively. We show that this mapping is the limit of solutions to a class of Monge-Kantorovich mass transportation problems with quadratic costs, with the weights of the coordinates asymptotically dominating one another. This enables us to design a continuation method for numerically solving the optimal transport problem.
Date: 2010
Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-01023796v1
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in SIAM Journal on Mathematical Analysis, 2010, 416, pp.2554-2576
Downloads: (external link)
https://sciencespo.hal.science/hal-01023796v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01023796
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).