EconPapers    
Economics at your fingertips  
 

Do We Need High Frequency Data to Forecast Variances?

Denisa Banulescu-Radu, Christophe Hurlin (), Bertrand Candelon () and Sébastien Laurent ()

Post-Print from HAL

Abstract: In this paper we study various MIDAS models for which the future daily variance is directly related to past observations of intraday predictors. Our goal is to determine if there exists an optimal sampling frequency in terms of variance prediction. Via Monte Carlo simulations we show that in a world without microstructure noise, the best model is the one using the highest available frequency for the predictors. However, in the presence of microstructure noise, the use of very high-frequency predictors may be problematic, leading to poor variance forecasts. The empirical application focuses on two highly liquid assets (i.e., Microsoft and S&P 500). We show that, when using raw intraday squared log-returns for the explanatory variable, there is a "high-frequency wall" – or frequency limit – above which MIDAS-RV forecasts deteriorate or stop improving. An improvement can be obtained when using intraday squared log-returns sampled at a higher frequency, provided they are pre-filtered to account for the presence of jumps, intraday diurnal pattern and/or microstructure noise. Finally, we compare the MIDAS model to other competing variance models including GARCH, GAS, HAR-RV and HAR-RV-J models. We find that the MIDAS model – when it is applied on filtered data –provides equivalent or even better variance forecasts than these models. JEL: C22, C53, G12 / KEY WORDS: Variance Forecasting, MIDAS, High-Frequency Data. RÉSUMÉ. Nous considérons dans cet article des modèles de régression MIDAS pour examiner l'influence de la fréquence d'échantillonnage des prédicteurs sur la qualité des prévisions de la volatilité quotidienne. L'objectif principal est de vérifier si l'information incorporée par les prédicteurs à haute fréquence améliore la qualité des précisions de volatilité, et si oui, s'il existe une fréquence d'échantillonnage optimale de ces prédicteurs en termes de prédiction de la variance. Nous montrons, via des simulations Monte Carlo, que dans un monde sans bruit de microstructure, le meilleur modèle est celui qui utilise des prédicteurs à la fréquence la plus élevée possible. Cependant, en présence de bruit de microstructure, l'utilisation des měmes prédicteurs à haute fréquence peut ětre problématique, conduisant à des prévisions pauvres de la variance. L'application empirique se concentre sur deux actifs très liquides (Microsoft et S & P 500). Nous montrons que, lors de l'utilisation des rendements intra-journaliers au carré pour la variable explicative, il y a un « mur à haute fréquence » – ou limite de fréquence – au-delà duquel les prévisions des modèles MIDAS-RV se détériorent ou arrětent de s'améliorer. Une amélioration pourrait ětre obtenue lors de l'utilisation des rendements au carré échantillonnés à une fréquence plus élevée, à condition qu'ils soient préfiltrés pour tenir compte de la présence des sauts, de la saisonnalité intra-journalière et/ou du bruit de microstructure. Enfin, nous comparons le modèle MIDAS à d'autres modèles de variance concurrents, y compris les modèles GARCH, GAS, HAR-RV et HAR-RV-J. Nous constatons que le modèle MIDAS – quand il est appliqué sur des données filtrées – fournit des prévisions de variance équivalentes ou měme meilleures que ces modèles.

Keywords: Economie; quantitative (search for similar items in EconPapers)
Date: 2016-12
Note: View the original document on HAL open archive server: https://hal-amu.archives-ouvertes.fr/hal-01448237
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Published in Annals of Economics and Statistics, CNGP-INSEE, 2016, pp.135--174. ⟨10.15609/annaeconstat2009.123-124.0135⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: Do We Need High Frequency Data to Forecast Variances? (2016) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01448237

DOI: 10.15609/annaeconstat2009.123-124.0135

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2020-03-29
Handle: RePEc:hal:journl:hal-01448237