Aggregated Versus Individual Land-Use Models: Modeling Spatial Autocorrelation to Increase Predictive Accuracy
Jean-Sauveur Ay (),
Raja Chakir () and
Julie Le Gallo ()
Additional contact information
Jean-Sauveur Ay: CESAER - Centre d'Economie et de Sociologie Rurales Appliquées à l'Agriculture et aux Espaces Ruraux - INRA - Institut National de la Recherche Agronomique - AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Raja Chakir: ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech
Julie Le Gallo: CESAER - Centre d'Economie et de Sociologie Rurales Appliquées à l'Agriculture et aux Espaces Ruraux - INRA - Institut National de la Recherche Agronomique - AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Post-Print from HAL
Abstract:
The objective of this paper is to compare the predictive accuracy of individual and aggregated econometric models of land-use choices. We argue that modeling spatial autocorrelation is a comparative advantage of aggregated models due to the smaller number of observation and the linearity of the outcome. The question is whether modeling spatial autocorrelation in aggregated models is able to provide better predictions than individual ones. We consider a complete partition of space with four land-use classes: arable, pasture, forest, and urban. We estimate and compare the predictive accuracies of individual models at the plot level (514,074 observations) and of aggregated models at a regular 12 × 12 km grid level (3,767 observations). Our results show that modeling spatial autocorrelation allows to obtain more accurate predictions at the aggregated level when the appropriate predictors are used.
Keywords: numerical models; Scale effects; Discrete choice modeling; Predictive accuracy; Spatial econometrics; modèle; économétrie spatiale; usage du sol; choix discret (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Published in Environmental Modeling & Assessment, 2017, 22 (2), pp.129-145. ⟨10.1007/s10666-016-9523-5⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01496823
DOI: 10.1007/s10666-016-9523-5
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().