Big Data Applications for Disaster Management
Muhammad Arslan (),
Ana-Maria Roxin (),
Christophe Cruz () and
Dominique Ginhac ()
Additional contact information
Muhammad Arslan: Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - CNRS - Centre National de la Recherche Scientifique
Ana-Maria Roxin: Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - CNRS - Centre National de la Recherche Scientifique
Christophe Cruz: Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - CNRS - Centre National de la Recherche Scientifique
Dominique Ginhac: Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
The term "disaster management" comprises both natural and man-made disasters. Highly pervaded with various types of sensors, our environment generates large amounts of data. Thus, big data applications in the field of disaster management should adopt a modular view, going from a component to nation scale. Current research trends mainly aim at integrating component, building, neighborhood and city levels, neglecting the region level for managing disasters. Current research on big data mainly address smart buildings and smart grids, notably in the following areas: energy waste management, prediction and planning of power generation needs (based on smart meter readings, statistical learning tools, integration of renewable energy sources, open service clouds), dynamic energy management (based on real-time data reading, benchmarking, visualization and optimization), and improved comfort, usability and endurance (based on the integration of energy consumption data, environmental conditions and levels of occupancy). However, the existing literature on big data for disaster management is limited. This papers aims to address this gap by presenting a systematic literature review on the applications of big data in disaster management. The paper will first presents the visual definition of disaster management and describes big data; it will then illustrate the findings and gives future recommendations after a systematic literature review.
Keywords: Cloud; disaster management; big data; disasters; sensor data; Challenges; Networks (search for similar items in EconPapers)
Date: 2017-05-04
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Published in 16th International Conference on Informatics in Economy (IE 2017): Education, Research and Business Technologies, May 2017, Bucarest, Romania
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01858265
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().