Multiple-priors optimal investment in discrete time for unbounded utility function
Romain Blanchard and
Laurence Carassus ()
Additional contact information
Romain Blanchard: LMR - Laboratoire de Mathématiques de Reims - URCA - Université de Reims Champagne-Ardenne - CNRS - Centre National de la Recherche Scientifique
Laurence Carassus: DVRC - De Vinci Research Center - DVHE - De Vinci Higher Education, URCA - Université de Reims Champagne-Ardenne
Post-Print from HAL
Abstract:
This paper investigates the problem of maximizing expected terminal utility in a discrete-time financial market model with a finite horizon under non-dominated model uncertainty. We use a dynamic programming framework together with measurable selection arguments to prove that under mild integrability conditions, an optimal portfolio exists for an unbounded utility function defined on the half-real line.
Date: 2018-06
Note: View the original document on HAL open archive server: https://hal.science/hal-01883787v1
References: Add references at CitEc
Citations:
Published in The Annals of Applied Probability, 2018, 28 (3), pp.1856-1892. ⟨10.1214/17-aap1346⟩
Downloads: (external link)
https://hal.science/hal-01883787v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01883787
DOI: 10.1214/17-aap1346
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().