EconPapers    
Economics at your fingertips  
 

Multiple-priors optimal investment in discrete time for unbounded utility function

Romain Blanchard and Laurence Carassus ()
Additional contact information
Romain Blanchard: LMR - Laboratoire de Mathématiques de Reims - URCA - Université de Reims Champagne-Ardenne - CNRS - Centre National de la Recherche Scientifique
Laurence Carassus: DVRC - De Vinci Research Center - DVHE - De Vinci Higher Education, URCA - Université de Reims Champagne-Ardenne

Post-Print from HAL

Abstract: This paper investigates the problem of maximizing expected terminal utility in a discrete-time financial market model with a finite horizon under non-dominated model uncertainty. We use a dynamic programming framework together with measurable selection arguments to prove that under mild integrability conditions, an optimal portfolio exists for an unbounded utility function defined on the half-real line.

Date: 2018-06
Note: View the original document on HAL open archive server: https://hal.science/hal-01883787v1
References: Add references at CitEc
Citations:

Published in The Annals of Applied Probability, 2018, 28 (3), pp.1856-1892. ⟨10.1214/17-aap1346⟩

Downloads: (external link)
https://hal.science/hal-01883787v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01883787

DOI: 10.1214/17-aap1346

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-22
Handle: RePEc:hal:journl:hal-01883787