Mapping the cost of CCUS Technologies: from partial capture to negative emissions
Audrey Laude ()
Additional contact information
Audrey Laude: REGARDS - Recherches en Économie Gestion AgroRessources Durabilité Santé- EA 6292 - URCA - Université de Reims Champagne-Ardenne - MSH-URCA - Maison des Sciences Humaines de Champagne-Ardenne - URCA - Université de Reims Champagne-Ardenne
Post-Print from HAL
Abstract:
According to the different climate change roadmaps (IEA, IPCC), Carbon Capture Storage (CCS) will play a key role in the climate change mitigation policy. Its development raises a trade-off between the deployment of large-scale projects (learning by replication), and the preservation of a large portfolio of competing technologies (learning by diversity), on each of its steps (capture, transport, storage). By now large-scale CCS projects are still few, most devoted to EOR (Enhanced Oil Recovery). Although EOR has provided a first feasible business model for CCS, CCS has still to prove its economic viability on a large variety of carbon emitters (power plant, industrial and bioenergy sources). A competing business model for CCS is to find other carbon uses and energy sources, better adapted to medium and small carbon sources. The paper presents such a technological solution, the CO2 DISSOLVED project, which combines CCS in a dissolved state with geothermal energy.
Keywords: Carbon Capture Storage; Geothermal Energy; Demonstration projects; Mitigation Policy; technological trajectories; CO2-DISSOLVED. (search for similar items in EconPapers)
Date: 2018-04-05
References: Add references at CitEc
Citations:
Published in International Conference on Environmental economics: a focus on natural resources, Apr 2018, Orléans, France
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02164692
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().